

Complementary mechanisms of plant cell wall deconstruction by free and complexed enzyme systems

Energy Innovation Portal's Accelerating Innovation Webinar

Dr. Michael Resch Research Scientist Biomolecular Sciences

8/8/2012

Conversion of Biomass to Fuels

Sugar Molecules

Free vs. Complexed Enzymes

Cellulosomes are Better at Degrading Cellulose than CTec2

Reaction Conditions:

1% Solids, 5 mg protein / g Glucan

Cellulosome: 30 mM NaAc pH 5.0, 10 mM Cysteine, 2 mg/g β-glucosidase, 60^o C.

CTec2: 30 mM NaAc pH 5.0, 500 C.

End Sharpening by CTec2

Splayed Ends by Cellulosomes

CTec2 is Better at Degrading PT Biomass

Synergistic Enhancement of Hydrolysis

Synergistic Enhancement of Hydrolysis

Illustration of Enzymatic Mechanisms

Acknowledgements

- Michael Himmel
- Jim Brainard
- Gregg Beckham
- Steve Decker
- Bryon Donohoe
- John Baker
- Ed Bayer

Research Funding

- Office of The Biomass Program
- Office of Science –
 BioEnergy Science
 Center (BESC)

